Pict a

KITAKADO Toshihide

Job title: Professor
Department: Department of Marine Biosciences
Degree: Doctor
Major: 農学

Research Interests 【 display / non-display

  • Mathematical Statistics

  • 数理統計学

  • 水産資源解析

  • データサイエンス

  • マグロ,サンマ,アザラシ,トド

display all >>

Research Areas 【 display / non-display

  • Informatics / Statistical science

  • Life Science / Aquatic bioproduction science

  • Natural Science / Basic mathematics

  • Life Science / Aquatic bioproduction science

  • Natural Science / Applied mathematics and statistics

 

Papers 【 display / non-display

  • Application of a delta-generalized additive model to assess the impact of environmental changes on the spatial distribution of bigeye tuna (Thunnus obesus) in the Indian Ocean

    Supatcha Lurkpranee, Toshihide Kitakado , 2025.01

    Fisheries Research

    DOI

  • Empirical validation of integrated stock assessment models to ensuring risk equivalence: A pathway to resilient fisheries management

    Laurence T. Kell, Iago Mosqueira, Henning Winker, Rishi Sharma, Toshihide Kitakado, Massimiliano Cardinale (These authors contributed equally to this work) , 2024.07

    PLOS ONE

    DOI

  • Abundance and potential sources of floating polystyrene foam macro- and microplastics around Japan

    Mao Kuroda, Atsuhiko Isobe, Keiichi Uchida, Tadashi Tokai, Toshihide Kitakado, Miho Yoshitake, Yoshinori Miyamoto, Tohru Mukai, Keiri Imai, Kenichi Shimizu, Mitsuharu Yagi, Takahisa Mituhasi, Akimasa Habano , 2024.03

    Science of The Total Environment

    DOI

  • Assessment of sea cucumber fishery in the Mullaitivu coastal waters in North-East, Sri Lanka

    Kasun Randika Dalpathadu, Sujeewa Sisira Kumara Haputhantri, Toshihide Kitakado , 2023.12

    Indonesian Fisheries Research Journal

    DOI

  • Estimation of abundance and population dynamics of the Antarctic blue whale in the Antarctic Ocean south of 60°S, from 70°E to 170°W

    Kohei Hamabe, Koji Matsuoka, Toshihide Kitakado , 2023.02

    Marine Mammal Science

    DOI

display all >>

Books 【 display / non-display

  • 水産科学と水産政策

    北門利英 , 2024.12

    恒星社厚生閣

  • 野生動物の保全と管理の事典 「野生生物と社会」学会 (編集), 日本哺乳類学会 (編集), 日本鳥学会 (編集)

    北門利英 , 2025.10

    朝倉書店 , 各論1.1 推定原理(最尤法,ベイズ法,そして野 生生物動態推定への応用), 鯨類の管理(コラム) , 各論1.1 推定原理(最尤法,ベイズ法,そして野 生生物動態推定への応用), 鯨類の管理(コラム)

  • 海棲哺乳類の管理と保全のための調査・解析手法

    村瀬弘人,北門利英,服部薫,田村力,金治佑 , 2023.09

    生物研究社 , 序章,12章,13章,15章 , 序章,12章,13章,15章

  • ベイズ統計分析ハンドブック

    D.K.デイ ・C.R.ラオ 編/繁桝算男 ・岸野洋久 ・大森裕浩 監訳 , 2011.10

    朝倉書店 , Chap 30 Bayesian Methods and Simulation-based Computation for Contingency Table, Chap 32 Bayesian Survival Analysis for Discrete Data with Left-truncated and Interval Censoring , 0-0

  • 農学・水産学系学生のための数理科学入門

    河邊 玲・北門利英・黒倉 寿・酒井久治・阪倉良孝・高木 力 , 2011.10

    恒星社厚生閣 , 第1章 数学 , 16-50

display all >>

Grant-in-Aid for Scientific Research 【 display / non-display

  • 0

    Project Period (FY): 2025/04  -  2028/03  Investigator(s): 北門 利英

    Grant-in-Aid for Scientific Research(C)  Principal Investigator  25K15016 

  • 気候変動下における水産資源の持続的利用を支える統計的モデリングの基盤確立

    Project Period (FY): 2022/04  -  2025/03  Investigator(s): 北門利英

    Grant-in-Aid for Scientific Research(C)  Principal Investigator  22K11929 

  • Statistical study on the establishment of the basis for a spatio-temporal model-based method of analysing fisheries resources.

    Project Period (FY): 2019/04  -  2023/03  Investigator(s): 北門 利英

    Grant-in-Aid for Scientific Research(C)  Principal Investigator  19K11855 

  • Advancing statistical methods for fishery population analysis

    Project Period (FY): 2016/04  -  2019/03  Investigator(s): Kitakado Toshihide

    Grant-in-Aid for Scientific Research(C)  Principal Investigator  16K00041 

    Scientific assessment frameworks for fisheries management are based on two main paradigms: “estimation of population dynamics” and “evaluation of management procedure”. Normally, a population dynamics model is fitted to time-series data, and the model is then used to assess historical population status relative to reference points and to predict the outcomes of alternative management options. In this study, to seek better statistical framework for evaluating population dynamics models through their prediction skills, a hindcasting approach was investigated. In this method, models are retrospectively re-run by removing recent years' data and the population trajectories are projected up to the most recent year to compare with the observed time-series data. The method was applied to some important global fishery resources to confirm the suitability of the approach and discuss possible caveats of the approach.

  • 水産資源の管理ストラテジーとエコロジカルリスク評価に関する統計的研究

    Project Period (FY): 2013/04  -  2016/03 

    Grant-in-Aid for Scientific Research(C)  Principal Investigator  25330036 

display all >>

 

Lesson Subject 【 display / non-display

  • Lesson Subject(Undergraduate)

    Advanced Statistics

  • Modelling for Fisheries Population Dynamics

  • Fish Population Analysis

  • Practice of Fish Population Analysis

  • Numerical Computing for Fish Population Analysis

  • Statistics

  • Population Dynamics of Whales and Dolphins

  • Lesson Subject(Graduate School)

    Risk Analysis Management

  • Special Seminar in Marine Utilization and Management

  • Special Research in Marine Utilization and Management

  • Fisheries Stock Assessment

  • Population Dynamics and Management

  • Fish Population Dynamics

  • Advanced Theory of Fish Population Analysis